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SUMMARY 
A rigorous model of the fully elliptic flow over the blade-to-blade stream surface in an annular aerofoil 
cascade is developed. The model accuracy stems from its precise simulation of the meridional hub-to-casing 
flow effects, including those of the shear stress components that are created by the spanwise velocity 
gradients. These stresses are unprecedentedly introduced in the flow-governing equations in the form of 
source terms and are modelled as such. The final set of flow-governing equations are solved using the 
Galerkin weighted residual method coupled with a biquadratic finite element of the Lagrangian type. The 
flow solution is verified against the numerical results of a fully three-dimensional flow model and a set of 
experimental data, both concerning a low-aspect-ratio stator of an axial flow turbine under a low Reynolds 
number and subsonic flow operation mode. The numerical results in this case show well predicted aerofoil 
loading and pitch-averaged exit flow conditions. Also evident is a substantial capability of the analysis in 
modelling such critical regions as the wake subdomain. It is further proven that the new terms in the 
governing equations enhance the quality of the numerical predictions in this class of flow problems. 

KEY WORDS Quasi-three-dimensional flow Aerofoil cascades Meridional/Blade-to-blade flow interaction 

1. INTRODUCTION 

A growing effort is being devoted to the improvement of bladed component efficiency in gas 
turbine engines towards an optimum overall performance. Considering the high cost of experi- 
mentation in this area, computational models have progressively been developed with the hope of 
reliably predicting the flow behaviour in annular aerofoil cascades. Conceptually, the problem is 
that of a three-dimensional periodic flow in the blade-to-blade, hub-to-casing passage of a 
turbomachine. In modelling this flow type it is crucial to account for such effects as flow 
recirculation, trailing edge mixing and wake structure. Existing numerical models in this area 
vary in complexity from the potential flow to that of viscous f l o ~ . ~ . ~  Compared to 
strictly two- and three-dimensional flow models, the quasi-three-dimensional approach to the 
cascade flow problem has been recognized as a sensible compromise in aspects of both economy 
and precision. It is, however, the viscous flow version of the problem under this approach that is 
in need of further enhancement, particularly in the area of simulating the hub-to-casing/blade-to- 
blade flow interaction effects. 

Existing viscous flow models of aerofoil cascades can be classified into two major categories: 
one of simple analyses and various levels of uncertainty, and another category of full-scale models 
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with undesirably high requirements of computational resources. Of these, the first category 
includes strictly two-dimensional (e.g. Reference 4) and quasi-three-dimensional (e.g. References 
5-7) flow models. A common feature here is that ellipticity of the viscous flow field in this case is 
either partially or totally ignored. The most recent of these models generally employ the thin- 
layer a p p r ~ x i m a t i o n ~ . ~ ~  ’ whereby different levels of inviscid/viscous flow interaction are intro- 
duced in an attempt to partially simulate the elliptic nature of the flow field. Another common 
feature is that the flow passage is defined as bounded by two successive mid-channel 
streamlines (of the type shown in Figure 3), which are computed on an inviscid flow basis and are 
later treated as flow non-permeable in the viscous flow phase of the computational procedure. It 
is, however, the extraction of the streamwise diffusion terms from the viscous flow equations that 
is, in the majority of these models, most damaging, since it unjustifiably forbids the downstream 
effects from influencing the flow behaviour. Under such an assumption, and with the exception of 
the exit pressure which is externally fixed, the flow exit conditions are normally obtained by 
extrapolation6* ’ and are generally inaccurate, at least from an analytical standpoint. The 
category of complex flow models, on the other hand, is best represented by that of Hah,* in which 
the ellipticity of the flow-governing equations is maintained throughout the computational 
domain. However, in view of the complex nature of the blade-to-blade, hub-to-casing flow 
passage in this case, the passage geometry in Hah’s model was considerably simplified. The blade 
in this model is in fact assumed to be untwisted, unleaned and untitled in the spanwise direction, 
and the aerofoil geometry is restricted to being identical at  all radial locations. These simplifi- 
cations, which are hardly applicable to modern turbine blades, had nevertheless no appreciable 
effect on the size of the computational model, which was exceedingly large. As a result, utilization 
of such a flow model in a normal design process, especially in its preliminary phase, would be 
unwise. Other existing models of the three-dimensional flow type are commonly based on the 
parabolized flow principle ( e g  References 9 and 10) and are conceptually less accurate by 
comparison. 

The present model fits under the quasi-three-dimensional flow models but deviates from 
existing models in the aspects of accuracy and completeness. The idea here is to iteratively solve 
the flow over two families of orthogonal stream surfaces (Figure 1) and was devised by Wu” for a 
rotational, yet inviscid, cascade flow. Unfortunately, existing blade-to-blade flow models (e.g. 
References 5-7), which were aimed at extending Wu’s theory to viscous flow computations, have 
commonly ignored the viscosity-related stresses on the blade-to-blade stream surface that would, 
according to Wu’s procedure, be the outcome of the meridional (hub-to-casing) flow com- 
putational phase. Examination of the flow-governing equations in these models also revealed that 
other, but perhaps less damaging, approximations have traditionally been introduced. The 
starting point in this study was therefore a rigorous derivation of the flow-governing equations in 
their most general form by applying the basic conservation principles to the typical fluid element 
shown in Figure 2.  Among the differences between the final set of equations and those in the 
standard formulation is a term that is proportional to the second streamwise derivatives of the 
stream tube thickness b and the radius I (Figure 2), as well as a key term through which the shear 
stressesfidentified by double arrowheads in Figure 2) over the upper and lower surfaces of the 
control volume are introduced in the equations of motion. Disappearance of the former term 
from the standard equations is a result of treating b and/or I as linear functions of the meridional 
distance s (e.g. Reference 5), which is often a restrictively fictitious assumption. This is true in the 
sense that b is primarily dependent on the endwall contours, which are often made non-linear in 
an attempt by the designer to alleviate excessive diffusion along the blade suction side. On the 
other hand, ignoring the above mentioned shear stress components, which are generated by the 
local spanwise gradients of the meridional and tangential velocity components, implies a hub-to- 
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casing free vortex flow behaviour which is simply inconsistent with recent gas turbine design 
trends, particularly in the propulsion area. The desire to minimize the weight and maximize 
the power in this gas turbine area often leads to low-aspect-ratio bladings with spanwise 
stacking patterns that are highly non-uniform (Figure 4). These complex patterns, added to 
typically significant spanwise variations of the aerofoil setting angles, create high spanwise 
velocity gradients which in turn produce the shear stress components on the stream tube inner 
and outer surfaces. The accuracy imparted to the computational model through refinement of the 
flow equations is, on the other hand, preserved by maintaining the flow ellipticity throughout the 
computational domain. As a result, the built-in capability of the governing equations to predict 
such loss-generating mechanisms as separation, recirculation and near-wake mixing is un- 
compromised. 

2. ANALYSIS 

Different views of the computational domain under consideration are shown in Figure 1. The 
meridional view of the domain shows radius and stream tube thickness variations which are 
totally unrestricted. Arbitrariness of these two parameters makes the current flow model 
applicable to general bladed components of turbomachines regardless of the meridional shape of 
the flow passage. 

It is assumed that the meridional view of the blade-to-blade stream tube (Figure 1) is readily 
defined. This is normally achievable through any of the existing axisymmetric flow codes (e.g. 
Reference 12). It is worth noting, however, that even the simple codes frequently used in the gas 
turbine industry for this purpose (e.g. References 13 and 14) normally account, to a good extent 
and through implicit means, for different real flow effects such as the blade blockage and profile 
losses, both of which are functions of the spanwise location. As a result, the spanwise velocity 
gradients produced by these codes are typically significant and highly representative of real flow 
effects in the meridional plane. These are the same gradients used in the current model to compute 
the shear stress components over the inner and outer stream tube surfaces (Figure 2). Applicable 
assumptions in the present model also include a steady, adiabatic and laminar flow through the 
aerofoil cascade. Of these, the laminar flow assumption confines the model applicability to 
operation modes with sufficiently low Reynolds numbers (typically below 2 x lo5). In spite of the 
apparent limitations that are implied by such an assumption, the choice here was in part 
motivated by the desire to extract the inaccuracy associated with what would have realistically 
been a low-order turbulence closure (e.g. Reference 7), concentrating instead on the manner in 
which refinement of the flow equations impacts the laminar flow field in a representative cascade, 
which is the main thrust of this study. 

2.1. Flow-governing equations 

Detailed derivation of these equations in their most general form is provided in the Appendix 
with reference to the fluid element in Figure 2. Although the equations are derived for a stationary 
blade row, the Appendix also contains definitions of the additional terms, such as those created 
by the Coriolis and centrifugal acceleration components in the case of a rotor cascade, for the 
purpose of completeness. Yet one of the fundamental differences between these and the traditional 
equations in any of similar existing models is that the shear forces on the fluid element faces below 
and above the mean stream surface (Figure 2) are now taken into account. These forces, as seen in 
the Appendix, are proportional to the spanwise gradients of velocity components, which, as 
indicated earlier, are viewed as a partial outcome of the preprocessing phase that involves the 
hub-to-casing axisymmetric flow field. 
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In their final form, the mass and momentum conservation equations can be expressed as 
follows: 

i a  ave --(rbV,)+--0, 
b as ae 

I 1 db 1 dr 1 a p  av, av, 
vV2V = -  --+-- p + - - + a 1 - + a 2 - + a ,  ~ , + a , ~ , + a , ,  (2) p ( b d s  r ds) p a s  a s  ae 

where the coefficients al-a5 and /I1-& are defined in the Appendix. The contents of these 
coefficients is where the newly introduced flow effects present themselves. Besides, the appearance 
of the first term on the right-hand side of equation (2) is a result of radius and stream tube 
thickness variations and is also an aspect in which the current equations differ from those in the 
literature. 

2.2. Boundary conditions 

In an elliptic flow model the solution is highly sensitive to the prescribed flow behaviour over 
the different boundary segments. Of these, the periodic and exit boundaries (Figure 3) are largely 
within the wake, where an artificially imposed flow pattern can lead to severe inaccuracies. 

The flow exit boundary conditions are based on the assumption that the exit station is located 
sufficiently far from the aerofoil trailing edge for a nearly complete mixing of the suction- and 
pressure-side streams. In this case the exit flow behaviour is dictated by the following Neumann- 
type boundary conditions: 

avs - v s  d 
~ - - - -(rb), 
as rb ds (4) 

where V, and Ve are the velocity components (Figure 2), r is the local radius and b is the local 
stream tube thickness. Equation (4) is recognized as a special form of the continuity equation in 
the Appendix, while equation ( 5 )  is a general derivative-type version of the angular momentum 
conservation principle which would, with reasonable accuracy, prevail at this far-downstream 
location. It is seen that the exit flow behaviour in the current analysis is unrestricted to artificially 
satisfy any uniform distribution of, for instance, the exit flow direction. Also note that the special 
geometrical features of the meridional view of the solution domain (Figure 1) make it inappropri- 
ate to specify any relatively simple exit conditions, such as zero surface tractions, since this would 
be incompatible with, for instance, the stream tube thickness variation as the exit station is 
approached. 

The cascade periodicity in the current analysis is implicitly enforced in a manner that 
eliminates abrupt changes in the field variables across the periodic boundaries while minimizing 
the core size during execution. Here, corresponding nodes on a pair of periodic boundaries are 
assigned the same global degree of freedom in the finite element model. In this case, contributions 
from finite elements sharing both nodes appear in the final form of the finite element equations 
associated with this degree of freedom. 
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Figure 3. Types of boundary conditions 

EXIT STATION 

TRAILING 
EDGE 

Figure 4. Typical aerofoil stacking pattern of a low-aspect-ratio gas turbine stator 
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Other applicable boundary conditions involve the remaining boundary segments and are all of 
the Dirichlet type. At the inlet station, both the through-flow and tangential velocity components, 
V,  and V,, are specified in accordance with the cascade operating conditions. Furthermore, the 
static pressure is fixed at the exit station and the no-slip condition is imposed over the aerofoil 
surface. 

2.3. Finite element formulation 

In the following a Bubnov-Galerkin finite element formulation of the flow-governing equa- 
tions is developed, with the discretization unit being a biquadratic curve-sided finite element of 
the Lagrangian type. Figure 5 shows this nine-noded element which was proven” to be highly 
accurate in the current ‘primitive variables’ form the Navier-Stokes equations. Elemental 
interpolation of the flow variables, on the other hand, is established in such a manner as to ensure 
satisfaction of the Ladyzhenskaya-BabuSka-Brezzi compatibility requirements. 16, Applied to 
the current problem, these requirements give rise to a subfamily of velocity/pressure interpolation 
combinations under which a stable and convergent solution is achievable. 

Throughout a typical element e let the velocity components and static pressure be interpolated 
as follows: 

9 

0 

A 

where N i  is a quadratic ‘shape’ function of the local co-ordinates ( and 9 that is associated with 
the ith corner, midside or interior node of the element in the local frame of reference,17 M k  is a 
linear function of [ and 9 that is associated with the kth corner node of the element, and V,,i, 
and p k  are the nodal values of velocity components and pressure. 

NODES WHERE THE VELOCITY COUPONEN’I‘S AliE . DECLARED AS VARIABLE3 
0 NODES WHERE THE PRESSURE IS A VARIABLE 

PARENT ELEMENT ELEMENT MAP IN THE PHYSICAL SPACE 

Figure 5. Quadratic curve-sided finite element of the Lagrangian type 
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The physical co-ordinates s and 6 are also mapped into the local frame of reference as follows: 
9 

s = C N i s i ,  
i = l  

9 
e = c N i e i .  

i =  1 

(9) 

Application of the Bubnov-Galerkin method1' in this case gives rise to the following set of 
equations for the typical finite element: 

continuity equation 

A k j  K, j + Bkj VO, j = O ,  

s-momentum equation 

cij V,, j +  Dij VO. j +  EikPk=zs,i, 

0-momentum equation 

Here 

cij = !+l 
- 1  

Dij = [-+11 {' 
- 1  

1 aNi aN. 1 aNi aN. 
-2+--1 did?, 
as as r2 ae ae 

Fij = [;ll 1" 
- 1  

Gij = J;]l s" 
- 1  

r+1 P + l  

where I J I is the Jacobian of co-ordinate transformation, ZSBi and Ze,i are closed integrals performed 
along: the element boundarv and n is the outward unit vector normal to the element hoiindarv 
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(Figure 2), with al-a5 and B1-& being those defined in the Appendix. Note that the double 
integrals appearing in the Is,  and l o ,  expressions (above) result from the shear stresses over the 
inner and outer surfaces of the fluid element (Figure 2), which are treated as source terms. This 
becomes clear by examination of the expressions for a5 and & in the Appendix. The assembled set 
of finite element equations are stored in partially packed arrays in order to reduce the core 
requirement and are subsequently solved using the numerical procedure by Gupta and Tanji,ls 
which is based on the Gauss-Jordan elimination technique. 

2.4. Method of numerical solution 

The flow solution is obtained iteratively through progressively updating the functions fs and c, 
in the momentum equations (see Appendix) in a successive substitution fashion. The com- 
putational procedure in this case is initialized by solving the flow equations for a theoretically 
creeping flow. The resulting velocity field is then used to upgrade the finite element equations and 
the process repeated towards conversion. This inner loop is re-entered within an outer loop in 
which the Reynolds number is elevated by equal increments of 500. An underrelaxation factor 
varying from 0.6 to 0.8 was used to ensure monotonic convergence. 

The state of numerical convergence was defined to occur whenever the summation of non- 
dimensionalized error in any of the flow variables, namely the velocity components and pressure, 
over all nodal points maintained a sufficiently small value in two consecutive iterations, i.e. 

where bi refers to the ith nodal value of a velocity component or static pressure, n is the iterative 
step at convergence and E is a tolerance factor set to be 3%. 

The reason for invoking two successive numerical solutions in the convergence criterion was to 
provide a means for differentiating between the state of actual convergence and that of numerical 
fluctuation. It was generally observed that the error jumps abruptly and a state of numerical 
oscillation occurs once the Reynolds number is elevated. This state again prevailed, but at much 
lower error levels, near the iterative step where convergence was finally achieved. 

3. RESULTS AND DISCUSSION 

A test case involving the mean section of a contoured endwall, low-aspect-ratio stator of a gas 
turbine was selected for the purpose of code verification. The stator flow  measurement^'^*^^ 
correspond to a 2.6: 1 scaled-up version of the original design and reflect a low-pressure-ratio 
operation mode with an exit critical velocity ratio of 0.3, for which the flow is incompressible for 
all practical purposes. Moreover, the low subsonic flow in the stator passages in this case gave rise 
to a low Reynolds number which, together with the flow incompressibility, is consistent with the 
assumptions made in the current study. 

Figures 6 and 7 show the turbine stator section under consideration and the blade-to-blade 
finite element discretization model. As seen in Figure 6, the section is one where both the radius 
and stream tube thickness are generally functions of the meridional distance, which was a desired 
feature in the test case selection process. Another motivating feature was the three-dimensional 
stacking pattern of the blade sections, which would naturally lead to spanwise variations in the 
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Figure 6. Meridonal and blade-to-blade views of the low-aspect-ratio statorIg 

velocity components that in turn create two significant shear stress components on the inner and 
outer surfaces of the stream tube (Figure 2). In fact, the choice of this stator section has provided 
an environment within which all terms of the flow-governing equations, particularly the newly 
introduced ones, were of significant contribution. Furthermore, since these terms are commonly 
functions of the distance s in the direction of the meridional streamline, it was necessary to 
provide a sufficient number of grid lines in this direction in the process of creating the finite 
element discretization model of the cascade unit as shown in Figure 7. The closeness of the grid 
lines in the finite element model is particularly observed around the trailing edge and in the near- 
wake region for better resolution of the high shear stresses in this flow-mixing region. This local 
refinement was necessary to offset the numerical consequences of not aligning grid lines with the 
yet unknown direction of the stagnation streamline. 

Preparation of the stator input data was based on the aerofoil geometry and operating 
conditions provided by W a t e r ~ n a n . ' ~ * ~ ~  Of these, the latter set of data was not used to pre- 
establish the exit flow direction, as is the case in parabolized flow models, since this is naturally 



238 E. A. BASKHARONE AND D. C. McARTHUR 

Figure 7. Finite element discretization model of the cascade unit as naturally connected to the two adjacent units 

produced as part of the numerical solution. It did, however, aid in estimating the different 
derivatives of velocity components normal to the stream tube, which are responsible for the two 
shear stress components described earlier. Since these derivatives are presumed known functions 
of the meridional distance s (Figure l), be that the outcome of a low-order axisymmetric flow 
analysis or experimental data, it was necessary to assume a ‘reasonable’ form of these functional 
relationships in terms of the spanwise velocity derivatives at the stator trailing edge, being the 
only location where such data were provided. 

Referring to Figure 6, it was hypothesized that the spanwise velocity derivatives are, for the 
major part, created by the continuous flow turning within the blade-to-blade passage, coupled 
with the spanwise variation of the aerofoil setting angles. Furthermore, examination of the blade 
geometry revealed that the flow deflection in the passage is gradual and that the rate of this 
deflection is zero at both the leading and trailing edge stations. The blade three-dimensionality, 
on the other hand, was judged to have a minimum impact at these stations owing to the simple 
non-swirling flow behaviour at the leading edge and the small spanwise curvature of the blade 
surface near the trailing edge of this particular stator.20 With these findings in mind, variation of 
the spanwise derivatives along the meridional flow trajectory was established using a single form 
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of functional relationship as follows: 

239 

where s is the distance, measured from the leading edge, along the meridional flow trajectory 
(Figure I), \y stands for 8’ K/an2, dV,/dn or d2 V p n 2  (see Appendix), \yo refers to the value of \y 
at the trailing edge and C is the aerofoil true chord (Figure 6). 

Note that the above is a third-order polynomial with zero s-derivatives at the leading and 
trailing edges. The trailing edge values Yo appearing in this expression represent the minimum 
amount of data that is typically known to the designer at the preliminary design phase, which is 
when the velocity diagrams at several spanwise locations are established. It is again emphasized 
that introducing such derivatives in this type of cascade flow problem is unprecedented. 

Numerical results of the stator flow analysis are compared with a set of experimental data and 
a three-dimensional parabolized flow solution1g720 for a Reynolds number (based on the true 
aerofoil chord C) of 2.58 x lo5. Although this number may theoretically place the stator flow field 
slightly inside the turbulent flow range, there is actually no evidence, in view of the favorable 
pressure gradient magnitude and the reportedly negligible free stream turbulence,20 that this was 
the case. In fact, results of the boundary layer computations for this stator, based on the 
experimental aerodynamic loading in Reference 20, imply that the likelihood of boundary layer 
transition from laminar to turbulent would be very much confined to a small segment near the 
trailing edge on the blade suction side. The stator flow during testing was otherwise laminar for 
all practical purposes. 

The stator flow computations were terminated at a Reynolds number of 2000. While it is 
theoretically true that a substantial increase in this number was indeed feasible (up to roughly 
10 000), the strong non-linearity of the flow-governing equations in this case would have caused 
the iterative process to be both slow and costly. On the other hand, a modest elevation of the 
Reynolds number, judging by the history of the computed flow variables during the solution 
process, would not have had the substantial numerical effects that would alter the major 
conclusions of this study. 

Figure 8 shows a comparison of the blade aerodynamic loading between the current flow 
model and the data mentioned earlier. The horizontal axis in this figure is the non-dimensional 
distance s in the direction of the meridional streamline, and the vertical axis is the local static-to- 
inlet total pressure ratio. As seen, the agreement between the current results and the flow 
measurements is good where experimental data points are given. Note that verification of the 
results over the front 40% of the blade suction side is not possible owing to the lack of 
experimental data in this region. However, examination of the more detailed experimental 
loading” for the hub and casing sections of the same blade revealed loading details similar to that 
detected by the current model at the midspan section, including in particular the local diffusion 
over the suction side. Knowing that the aerofoil sections at all three locations are characterist- 
ically similar, it is perhaps reasonable to assume that the computed pressure, even in this region, is 
in good standing. In fact, it is clear in Figure 8 that the computed pressure distribution over the 
major part of the blade surface is closer to the flow measurements than that of the fully three- 
dimensional flow solution2’ based on a parabolic flow assumption. This includes, in particular, 
the trailing edge region where prior selection of the flow exit angle, which is tied to the flow 
parabolization, is most damaging. 

Figure 8 also illustrates the effect of including the new terms in the flow-governing equations. 
As explained earlier, the single most significant group of such terms includes the shear stress 
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Figure 8. Non-dimensional static pressure distribution over the blade pressure and suction sides 

components on the inner and outer surfaces of the stream tube (Figure 2). The program was 
consistently re-executed with the only difference being that of extracting these shear components 
in an attempt to assess their influence on the flow solution. It is important to point out that the 
effect of these stress components would be most significant in the rear segment of the blade 
(equation (14)). With this in mind, examination of Figure 8 reveals that the aerodynamic loading, 
particularly in the rear blade segment, is worsened as these new terms are deleted. 

Shown in Figure 9 is a comparison of the computed exit angle distribution with the experi- 
mental measurements. Both sets of data in this figure correspond to the dotted line in Figure 7 
and the flow angle is measured from the through-flow direction. Recalling the significant 
difference in Reynolds number between the two data sets, and that this would primarily affect the 
viscous region near the blade surface, it is sensible to see the computed angle in Figure 9 deviating 
the most near the two trailing edges in the blade-to-blade passage. However, the fact that the 
average exit angle in this Figure differs by only 2.1% from the experimental value is definitely 
encouraging. Note that comparison of the current exit angle distribution and that of the 
parabolized flow code is invalid, since the exit angle in the latter code is essentially fixed owing to 
the duct-like flow field to which the problem is reduced in this case. 

Figure 10 shows a vector plot of velocity in the region downstream from the blade trailing edge. 
This is a critical region of the flow domain where a major part of the overall total pressure loss 
occurs owing to boundary layer mixing. Knowledge of the wake structure and extent in this 
region is of particular interest as a basis for optimizing the stator/rotor gap length within a 
turbomachinery stage in an attempt to suppress the time-dependent interaction effects between 
the stationary and rotating blade rows. 
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Figure 9. Circumferential variation of the flow exit angle 

24 1 

Figure 10. Vector plot of the velocity field in the boundary-layer-mixing region 
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4. CONCLUSIONS 

An expanded model of the blade-to-blade quasi-three-dimensional cascade flow problem has 
been developed. The primary and foremost contribution of this model lies in introducing 
significant terms in the flow-governing equations in such a way as to restore the mutual 
interaction between the flow field in the blade-to-blade passage and that in the hub-to-casing 
meridional plane. Of these, terms proportional to the shear stresses over the stream tube inner 
and outer surfaces are representative of a group that is categorically unprecedented. Verification 
of the model was successfully achieved using existing flow measurements that correspond to the 
midspan section of a low-aspect-ratio stator. The blade aerodynamic loading was also compared 
with the loading obtained through a three-dimensional parabolized flow approach. The confirm- 
ed drawbacks of the latter approach, including inaccurate flow exit conditions and circulation 
magnitude, are indeed typical and, to a varied extent, apply to the currently existing and widely 
used models in which ellipticity of the viscous flow field is not rigorously introduced. 
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APPENDIX: DERIVATION OF THE FLOW-GOVERNING EQUATIONS 

Referring to the velocity and stress patterns associated with the fluid element in Figure 2 and 
denoting the direction normal to the stream tube by n, the continuity and momentum 
equations can be expressed as follows. 

continuity equation 

a ve 
ae 

i a  
b as - - (rb V,) + - =O. 

s-momentum equation 

= (p + z d s )  (b + db)(r + dr)de + pbrde + us + --'ds (b + db)(r + dr)d8 - u,brdO ( Z )  

where dAi and dA, are the inner and outer areas of the differential control volume in Figure 2. 
These infinitesimally small surface areas can be expressed as follows: 

dAi = ds(r+:)dO, 

do, 

where R, is the radius of curvature of the stream tube in the meridional (2--I) plane and 4 is the 
slope angle of the stream tube with respect to the positive axial direction. Referring to Figure 2, 
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the following relationship also applies: 

cos 4 = drfds. 
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(19) 

&momentum equation 

where dAi and dA, are the same as in expressions (17) and (18) above. Substituting expressions 
(17)-(19) in equations (16) and (20), dividing by rbdsde and ignoring high-order terms, the 
momentum equations can be rewritten as follows: 

(22) 
Note that the radius of curvature R, (Figure 2), appearing in the last two terms of equations (21) 
and (22), would be infinite in the case of a purely axial turbomachine. In this case the derivative 
drfds would vanish along the stream tube. Both of these conditions are met with a reasonable 
accuracy in axial flow turbomachines where the meridional flow trajectory (Figure 2) is predom- 
inantly in the axial direction. 

Assuming a Newtonian fluid, the stress/strain relations expressed in the curvilinear frame of 
reference (Figure 2) are as follows: 
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where p is the viscosity coefficient. Substitution of the preceding relations in the momentum 
equations (21) and (22) gives rise to the final set of linearized momentum equations, which can be 
expressed in terms of the kinematic viscosity coefficient v as follows: 

(23) 
1 i d b  l d r  1 ap av, av, 
p(bds  r d s )  p as as ae 
1 a p  av, av, a V S  

pr ae as ae 

vV’V, = - --+-- ~ + - - + + ~ ~ + ~ ~ - + + ~ ~ + a ~ ~ ~ + a ~ ,  

vV2 ve = - - + 81 ~ + 8 2 - +  8 3  ve + 8 4 ~  + 8 5  K + 86, 

where 

a1 = ~ ~ - v ( k g ) ,  

d 1 db 1 dr u 3 = v -  --+-- 
ds 0 b ds r ds ’ 

dr a 4 = - - -  
r ds’ 

81= F s - v ( b d s - ; d s ) ’  l d b  1d r  

fi ----+v dr ( 1  dbdr 1 d’r) 
r ds br dsds r ds2 ’ 3 -  

v dr 
r’ ds 

8 ----, 
4 -  

8s = 0, 

fi ----+-A8-- v a 2 V e  v av v dr 1 avo Ve 
6 -  r an2 r2 an r(ds i ,)(r  an r2)’ 

with the symbol ( - )  signifying a value that is known from a previous iteration or an initial guess, 
and p being the fluid density. 

In deriving equations (23) and (24), expressions derived from the continuity equation (15), by 
differentiating both sides of this equation with respect to s and 6, were utilized. Also used in the 
process was the expression of the Laplacian operator in the current frame of reference (Figure 2) 
as follows: 

a 1 a2 i d r  a 
v2=-+--+---  as2 r’ ae2 r ds as‘  

As seen, the free terms a5 and p6 above are proportional to the lateral velocity gradients and are 
numerically treated as source terms. 
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The preceding equations describe the flow pattern in a stationary frame of reference for a non- 
rotating aerofoil cascade. Expansion of the equations to a rotating cascade can simply be 
achieved by replacing the absolute velocity f by the relative velocity ct and including the 
centrifugal and Coriolis acceleration components in the Tomentum equations. In doing this, 
constraints involving can easily be written in terms of W by recalling that 

with w being the rotational speed. The final set of equations in this case are identical to equations 
(15), (23) and (24), with the exception that the coefficients u4, as and f l s  are now defined as follows: 

We dr dr 
u4= 20-,  

r ds ds 

a 2  w, dr 
an2 ds 

as = -v-- w2r -, 

dr /Is = 2w -. 
ds 
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